
64 TUGboat, Volume 30 (2009), No. 1

Supporting layout routines in MetaPost

Wentao Zheng

Abstract

METAPOST is known as a powerful graphics drawing
language. However, METAPOST dose not provide
any mechanisms to automatically lay out graphic
objects. In this article, we present two approaches
to help METAPOST users to automatically or semi-
automatically lay out objects that they are drawing.

1 Introduction

METAPOST is widely adopted by LATEXers to gen-
erate high quality graphics in their documents. It
is well known for its precisely controlled geometric
restriction, textual label integration with TEX, and
extendable macros. A variety of packages/macros,
like MetaUML, m3D, have been created that allow
LATEX users to draw high quality graphics easily and
professionally. Although these packages provide us
with the functionality to draw objects and links, it
is often noticed that we still need to spend a lot of
effort laying out the objects we are drawing.

Let’s take a look at an example diagram (Fig-
ure 1) from John Hobby’s METAPOST manual [1]
on page 63 (it may appear on different pages in dif-
ferent versions of the METAPOST manual). It is a
simple finite state diagram that has five states, ten
arrow links and corresponding labels. There are sev-
eral routines in the source code that have something
to do with the diagram’s layout, i.e., state (node)
positioning, arrow (link) direction tuning and label
positioning. And these routines take at least half of
the total source code. The problem is clear now: can
we develop a METAPOST package that provides users
with automatic or semi-automatic layout routines?

Start
B

(a|b)∗a

C

b∗

D

(a|b)∗ab
Stop

b

b

a

a

a

b b

a

a

b

Figure 1: An example diagram from the METAPOST

manual

The problem of automatically laying out general
graphs is not new. A number of academic activities,
such as the International Symposium on Graph Draw-

ing, have been existed for decades on the research of
algorithms and methods for graph visualization. Aes-
thetics and computational complexity are the major
concerns in the research. However, algorithms/meth-
ods for general graph drawing problem with both
efficiency and aesthetics have not been presented.
Most current research is focused on special graph
drawing problems or approximated solutions.

Therefore, the question that whether we can de-
velop a (semi-)automatic layout package for META-
POST cannot be answered simply by a ‘Yes’ or ‘No’.
In this article, we first address some issues and chal-
lenges in developing a layout package for METAPOST

(Section 2), then propose several possible approaches
(Section 3). Some future work is also discussed at
the end (Section 4).

2 Challenges

Although we will not develop a general method to lay
out graphs, even (semi-)automatic layout is difficult.

First of all, METAPOST is not an object-oriented
programming language. Although it has facilities to
simulate some aspects of OO programming, there is
no “base object” in METAPOST. Therefore it is not
easy to write a layout routine that can be applied on
different graphic objects. For example, METAPOST’s
boxes macro introduces a kind of object (box and
circle) with properties

c n e s w ne nw se sw

so we can manage an object’s positions by manipu-
lating geometric relations on those properties. But
what if another user wants to use the routine to lay
out objects without the properties mentioned above?
A practical, though not friendly, solution is to specify
rules (properties and methods) to objects that need
to use the layout routine.

Secondly, developing a purely automatic layout
routine is difficult, even impossible. In the research
of graph drawing, practical algorithms exist only for
special graphs, such as trees, DAGs (direct acyclic
graphs). There exists no general layout method for
an arbitrary graph with satisfactory aesthetics and
acceptable running time.

The first solution to this problem is designing on
demand. That is to say, to develop layout routines
for specific graphs. Graphviz is a graph drawing
program that takes this approach, providing several
practical routines to draw graphs.

Another solution is using the KISS (keep it sim-
ple, stupid) principle. That is to keep layout routines
small, easy to understand and practical to use. How-
ever, by taking this approach, another problem arises:
how to design those routines? That is, what to pro-
vide, and what to omit? It has been seen in some

Wentao Zheng

TUGboat, Volume 30 (2009), No. 1 65

diagramming tools that small layout routines are
very useful and easy to use. For example, “horizon-
tal or vertical alignment”, “equal height or width”
are good layout routines. But these examples are
not enough; we need to design more routines and
expect some combinations of them will generate very
useful and sophisticated results.

3 Possible approaches

In this section, we will present several approaches to
developing layout routines in METAPOST.

3.1 Reusing Graphviz

Actually, Graphviz is a set of programs for automat-
ically specifying graph layout:

dot makes hierarchical or layered drawings of di-
rected graphs.

neato and fdp make spring model layout.

twopi makes radial layout.

crico makes circular layout.

For more information, please take a look at their web
site: http://www.graphviz.org.

There is a LATEX package called dot2tex that
makes use of Graphviz to generate PSTricks and
PGF/TikZ commands in LATEX documents. For de-
tailed information, please take a look at their web
site: http://www.fauskes.net/code/dot2tex. It
is obvious that we can take a similar approach to
adopt Graphviz in METAPOST.

In the rest of this section, we are going to use
dot as an example to show how to use Graphviz to
generate automatic layout routines for METAPOST.

Let’s first take a look at how to represent the
simple graph in Figure 2 in the dot language:

digraph G {

A -> B [label = "x"];

A -> C [label = "y"];

C -> B [label = "z"];

}

AB

C

x

yz

Figure 2: A simple graph

By using the dot program, a diagram with au-
tomatic layout is generated, as shown in Figure 3.
We can see that nodes are separated with proper
distances, links are placed with appropriate angu-
lar resolutions, and labels are displayed at the right

A

B

x C

y

z

Figure 3: Diagram generated by dot

places. Although the diagram is not as “pretty” as
the one in Figure 2, the layout is at least readable.

In dot, some mechanisms are provided to tune
the graph layout with manual control of nodes, links,
and labels. We won’t introduce them here because
we want to keep our focus on the adoption of dot in
METAPOST.

dot supports several kinds of output format,
such as plain text, PostScript, SVG, and binary im-
ages. Among those, plain text is the easiest to reuse
in METAPOST. The following text is the compiled
output of the aforementioned dot source code.

digraph G {

node [label="\N"];

graph [bb="0,0,85,212"];

A [pos="27,194",

width="0.75",

height="0.50"];

B [pos="27,18",

width="0.75",

height="0.50"];

C [pos="58,106",

width="0.75",

height="0.50"];

A -> B [label=x, pos="e,23,36

23,176

...

21,46",

lp="18,106"];

A -> C [label=y, pos="...",

lp="46,150"];

C -> B [label=z, pos="...",

lp="47,62"];

}

We can see that layout information can be extracted
from the output. Graph nodes, such as A, are indi-
cated by pos (position), width, and height, while
links, such as A -> B, are indicated by label, pos
(path points), and lp (label position). It is easy to
automatically extract the layout information from
the output and then use it in METAPOST.

Supporting layout routines in MetaPost

http://www.graphviz.org
http://www.fauskes.net/code/dot2tex

66 TUGboat, Volume 30 (2009), No. 1

In order to use dot in METAPOST, we should
firstly write METAPOST/dot hybrid code (named
as an MPdot file) as follows:

input boxes;

beginfig(1);

circleit.a(btex A etex);

circleit.b(btex B etex);

circleit.c(btex C etex);

begindot % begin of dot code

digraph G {

a -> b [label = "x"];

a -> c [label = "y"];

c -> b [label = "z"];

}

enddot % end of dot code

endfig;

It is noticed that the content between begindot

and enddot is written in dot language. We are
using METAPOST suffixes, such as a, instead of their
labels, such as "A", to represent nodes in dot. This
is because we want to connect the dot with the
METAPOST code. We show the importance and
desirability of doing this below.

In the next step, we use a program to parse dot

code from the MPdot file and rewrite it into another
intermediate dot file (named an IMdot file) for com-
pilation. For those nodes represented by METAPOST

suffixes, such as a, their respective definitions, like
circleit.a(...), will be used to determine their
dimensions (width and height). The following code
shows what the generated IMdot file looks like.

digraph G {

a [height = 0.19595, width = 0.19595,

label = ""];

b [height = 0.19174, width = 0.19174,

label = ""];

c [height = 0.19313, width = 0.19313,

label = ""];

a -> b [label = "x"];

a -> c [label = "y"];

c -> b [label = "z"];

}

We can see that nodes are defined with height,
width, and label properties. The height and width
of a node are calculated based on the correspond-
ing suffix defined in METAPOST code. This is the
reason why we use METAPOST suffixes to represent
dot nodes in the MPdot file.

The IMdot is then sent to the dot program for
compilation, and layout information is generated. We
can extract the layout information from the output
and generate METAPOST code to replace the dot

code in MPdot file, resulting in the final META-
POST file. The following is the final METAPOST

file, in which the dot code is replaced by generated
METAPOST code. After compilation, it outputs a
graph shown in Figure 4.

input boxes;

beginfig(1);

circleit.a(btex A etex);

circleit.b(btex B etex);

circleit.c(btex C etex);

% the following code is auto generated

a.c = (7pt,141pt);

b.c = (7pt,7pt);

c.c = (24pt,74pt);

drawunboxed(a,b,c);

draw fullcircle scaled 0.19in

shifted a.c;

draw fullcircle scaled 0.19in

shifted b.c;

draw fullcircle scaled 0.19in

shifted c.c;

label(btex x etex, (4pt,74pt));

label(btex y etex, (19pt,108pt));

label(btex z etex, (19pt,40pt));

drawarrow

(6pt,134pt)..(0,62pt)..(6pt,14pt);

drawarrow

(9pt,134pt)..(16pt,105pt)..(22pt,81pt);

drawarrow

(22pt,67pt)..(15pt,38pt)..(9pt,14pt);

endfig;

A

B

Cx

y

z

Figure 4: Graph generated by METAPOST with dot

layout information

With TEX labels integrated and METAPOST’s
curve path tuning, the graph shown in Figure 4 looks
better than that in Figure 3.

The approach of reusing Graphviz that we just
explained can be summarized in Figure 5. At first, a
user writes a MPdot file, in which the dot code is
translated into a IMdot file. The IMdot file is then

Wentao Zheng

TUGboat, Volume 30 (2009), No. 1 67

sent to dot for compilation, and layout information
is returned. The information is extracted and trans-
lated into METAPOST statements to replace the dot

code in MPdot file, resulting a pure METAPOST file,
based on which the final graphics is generated.

MPdot file IMdot file Layout Info

MetaPost file

Final Graphics

Figure 5: Approach of reusing Graphviz (dot)

3.2 Small, stupid routines

As we can see in the previous section, Graphviz is
not a perfect layout tool. Users with strong sense
of aesthetics may not be satisfied with Graphviz’s
result. This is why we propose another approach:
designing small and stupid routines.

Trivial layout routines have long existed in vari-
ous diagramming software and user interface design-
ing tools. For example, you can select a number of
graphic objects, make them align horizontal, from
left to right, and have same width and height. These
routines, including alignment, order, and dimension
specification are very useful when we are drawing
diagrams. So we are going to extend them and make
them available in METAPOST.

Generally, there are three types of graphic ob-
jects in diagrams, i.e., shapes, links, and labels. A
shape is an object with a surrounding path (usually
closed), such as a rectangle, ellipse, etc. A link is a
path connecting two shapes, usually parameterized
with a start shape and end shape, such as arrow link,
line link, etc. A label is a textual container containing
formatted text, and a transparent surrounding path.
Figure 6 shows two shapes (rectangles) connected by
an arrow link labeled by “Label”.

Label

Figure 6: Three types of graphic objects

For a shape, its internal properties should be
set by end users or calculated based on its inner
label. For a link, the objects it connects to should
be set by end users. For a label, only the textual
content should be set by end users. Therefore, layout
routines should care about where a shape is located,

what path points a link should go through, and where
a label is placed.

As we mentioned in Section 2, METAPOST is
not an object-oriented language. So it is difficult
to design routines for different graphic objects. For
simplicity, let us focus on laying out graphic objects
defined by the boxes package, i.e., box and circle.
The common attributes they share are (as shown in
Figure 7):

c center point of a shape

n north point of a shape

s south point of a shape

e east point of a shape

w west point of a shape

Another very important attribute is bpath, which
is the surrounding path of the shape. We can use
this path to determine a shape’s bounding area, and
ensure that a link’s end points are tightly connected
on the path.

n

w e

s

c

Figure 7: Attributes of a box or circle

Let’s focus on shape layout routines first. The
simplest and most frequently used is linear alignment.
That is to say, align a number of objects through a
line. Consider the following macro

line align <dir>,<gap>,<objects>

It uses dir (the direction of the line), gap (distance
between consecutive objects), and objects (objects
to be aligned) as parameters.

Sometimes, line alignment is not sufficient, so
we present another way to align objects: general
path alignment. It looks like

path align <path>, <objects>

The parameter path specifies a path (line or curve)
along which the <objects> are placed and separated
evenly.

Being different from shapes, there is no need to
specify the location of a link, because it is used to
connect two shapes (in most cases). After the laying
out of shapes, the question of where links start and
end is quite easy to answer. So link layout should be
focused on how we link two shapes: on a straight line,
curve or orthogonal polyline. The following macros
are used to specify how to layout links:

line_link <start_shape>, <end_shape>

curve_link <start_shape>, <start_dir>,

Supporting layout routines in MetaPost

68 TUGboat, Volume 30 (2009), No. 1

A

B

C

D

H

I

J

K

L

A

B

C

D

H

I

J

K

L

Figure 8: Alignment of shapes

<end_shape>, <end_dir>

orth_link <start_shape>, <start_side>,

<end_shape>, <end_side>

The line link is used to connect start shape and
end shape. The curve link takes two other param-
eters, i.e., start dir (the direction of link path at
the start point) and end dir (the direction of link
path at the end point). Similarly, the orth link

takes parameters start side (north, east, south, or
west) and end side. For the first and second link
macros, it’s easy to implement. But for the last one,
more effort is required, and we are not going to solve
it in this article. Figure 9 shows three types of link
layout (the orthogonal one is drawn manually, just
to show what it looks like).

Start End

Figure 9: Layout of links

A label’s layout is a little complicated. First of
all, labels can be treated as a special kind of shape
without a surrounding path. It is natural that we
let shape layout routines, such as linear alignment,
be applicable for labels. Besides, labels have other
means for layout. An example is creating a label for
a link or a shape. We name this kind of label an
association label.

Let’s start with association labels for links. Be-
cause a label is usually placed somewhere along the

path of a link, we can use the following macro to lay
out the label.

link label <label> <link> <portion>

label defines what textual content to be displayed,
link is a link object suffix, and portion is a number
between 0 and 1 that denotes where the label is
placed along the link path.

Association labels for shapes are easier to handle.
In most cases, a shape’s properties like n and c is
sufficient for manipulating the positions of labels.
Figure 10 shows a number of labels for links and
shapes.

A B
portion = 0.2

portion = 0.5

portion = 0.8

Figure 10: Layout of association labels

After introducing some small and stupid layout
routines, we suggest users use them in the following
order:

1. Declaring shapes with macros like boxit and
circleit

2. Laying out shapes by using the aforementioned
routines

3. Declaring and laying out links

4. Declaring and laying out labels

The reason for this order is that label positions rely
on links and shapes, and link paths relies on shapes.
So it is necessary to first lay out shapes, then links,
and do labels last.

4 Future work

In this article, we propose two approaches of sup-
porting layout routines in METAPOST, to make the
drawing of diagrams convenient and aesthetic. We
introduce them separately with detailed explanation
and some examples. However, the methods presented
in this article are at a very early stage; refinement
and extension must be done to make them more
practical. This is planned for the near future.

References

[1] John Hobby, “METAPOST: A User’s Man-
ual”, ctan:graphics/metapost/base/manual/

mpman.pdf.

⋄ Wentao Zheng
IBM China Research Laboratory
zhengwt (at) cn dot ibm dot com

Wentao Zheng

ctan:graphics/metapost/base/manual/mpman.pdf
ctan:graphics/metapost/base/manual/mpman.pdf

	Introduction
	Challenges
	Possible approaches
	Reusing Graphviz
	Small, stupid routines

	Future work

